Genetic pathways and genome-wide determinants of clinical outcome in colorectal cancer.
نویسندگان
چکیده
Various studies have suggested the existence of different pathways of tumor progression in colorectal cancer that associate with specific molecular, chromosomal, and clinicopathological features. We hypothesize that a comprehensive analysis of cumulated genomic damage in colorectal cancers would aid the characterization of different tumor progression pathways and identify the factors determining clinical outcome of tumors of each type. Genome-wide disruption was studied by DNA fingerprinting in a series of 129 sporadic colorectal carcinomas. These results, taken together with data for DNA ploidy, microsatellite instability, p53, and K-ras mutations and clinicopathological characteristics of the patients, have been used to classify colorectal carcinomas. The following five groups can be defined based on the type and level of cumulated genomic damage: (a) tumors with microsatellite instability, right location, and good prognosis; (b) diploid tumors lacking p53 mutations, left and right location, low subchromosomal damage, and bad prognosis; (c) diploid tumors with p53 mutations, left location, high levels of subchromosomal damage, and good prognosis; (d) high aneuploid tumors, p53 mutations, left location, high levels of numerical and structural chromosomal alterations, and bad prognosis; and finally (e) low aneuploid tumors, no p53 mutations, left and right location, low levels of structural chromosomal alterations, and good prognosis. We postulate that these groups represent alternative pathways of tumor progression, each with determinants of aggressiveness. This indicates a need for different prognostic assessments depending on which group the tumor belongs to.
منابع مشابه
Clinical Outcome in Colorectal Cancer Genetic Pathways and Genome-Wide Determinants of Updated Version
Various studies have suggested the existence of different pathways of tumor progression in colorectal cancer that associate with specific molecular, chromosomal, and clinicopathological features. We hypothesize that a comprehensive analysis of cumulated genomic damage in colorectal cancers would aid the characterization of different tumor progression pathways and identify the factors determinin...
متن کاملI-45: FISH and Array CGH for PGD of Cancer
We developed several FISH approaches to enable preimplantation genetic diagnosis of cancer predisposition syndromes. An overview of the applications and the results of those PGDs will be provided. In addition we developed several novel tools to genome wide screen for CNVs and SNPs in single cells. Those technologies are now being applied for polar body, blastomere and blastocyst screening for c...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملLong Non-coding RNA ZEB1-AS1 Promotes Tumorigenesis and Metastasis in Colorectal Cancer
Emerging evidence implicates that a large fraction of human genome was transcribed but the transcripts known as long non coding RNA are not translated into proteins. They are contributing in different cellular processes, including cellular proliferation and apoptosis. LncRNAs were found to play critical roles in many diseases and act as key regulators in malignancies. In this study, we investig...
متن کاملThe Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer
Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 21 شماره
صفحات -
تاریخ انتشار 2003